Pearson

Mark Scheme (Results)

November 2017

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2017
Publications Code 1MA1_1H_1711_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.

Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line then mark both methods as far as they are identical and award these marks.

I ncorrect method

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

I gnoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

Probability

Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

Linear equations

Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

Range of answers
Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
P process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark
B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/1H				
Question	Working	Answer	Mark	Notes
1		$2 \times 2 \times 3 \times 3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for complete method to find prime factors; could be shown on a complete factor tree with no more than 1 arithmetic error or $2,2,3,3,(1)$ $2 \times 2 \times 3 \times 3 \text { oe }$
2		14:21:42	P1 P1 P1 A1	for 2 out of 3 expressions in one letter eg from $x, x+72 x+14$ or see a set of numbers to show interpretation of the relationships, eg 10, 17, 34 (dep) for sum of their 3 expressions $=77$ eg $x+x+7+2 x+14=77$ oe or 2 systematic correct trials including addition for a correct process to isolate their term in x or $x=14$ for ratio 14:21:42 oe
3	$C B$ extended to form $C G$	Reasoning	B1 M1 C2 (C1	for 35 or 75 or 145 or 105 or $D E F=70$, marked on the diagram or 3 letter description for 180-70-35 or 180-75-35 or a correct pair of angles that would lead to 75 or 70, eg $A F B=35$ and $F A B=75$ or $A F B=35$ and $A B G=75$ or $F B C=35$ and $A B G=75$ or $E D F=75$ and $D E F=70$ or $F D C=105$ and $F B C=35$ or $A B C=105$ and $F B C=35$ (dep on B1M1) All figures correct with all appropriate reasons stated. Angles must be clearly labelled or on the diagram. Full solution must be seen (dep on B1 or M1) for one reason clearly used and stated.) Corresponding angles are equal, alternate angles are equal, opposite angles in a parallelogram are equal, angles in a triangle sum to 180 , angles on a straight line sum to 180 , vertically opposite angles are equal, vertically opposite angles are equal, angles in a quadrilateral sum to 360 , co-interior angles sum to 180 , allied angles sum to 180 , angles around a point sum to 360

Paper: 1MA1/1H						
Question	Working	Answer	Mark		Notes	
4		Daisy is wrong (supported)	P1 P1 A1 C1	for process to find area of any relevant circle ie $\pi \times 4^{2}(=16 \pi), \pi \times 7^{2}(=49 \pi)$, $\pi \times 10^{2}(=100 \pi)$ or 7^{2} and 4^{2} for completed method to find shaded area eg " $\pi \times 7^{2 "}$ " " $\pi \times 4^{2 "}$ " $=33 \pi$) or use of radii eg $7^{2}-4^{2}(=33)$ for 2 comparable figures, eg 33π and 100π or 33 and 100 or 103 to 103.7 and 314 to 314.2 or 103 to 103.7 and 104.6 to 104.8 statement eg No because it should be $\frac{33}{100}$ and their accurate figures Allow use of $\pi=3$ or better		
5 (a) (b)		365 Comment	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { C1 } \end{aligned}$	$f x$ with x consistent within intervals eg $200 \times 1,300 \times 11,400 \times 5,500 \times 0$, 600×3, if $200,3300,2000,0,1800$ are seen without working then condone 1 error (dep) $\Sigma f x \div \Sigma f$ eg " 7300 " $\div 20$ cao for comment about outliers affecting mean		
6		Shows reasoning to reach $y=3$	M1 M1 M1 A1	forms equation eg $2 x+6=5 x-9$ isolates x and number terms $3 x=15$ substitutes " 5 " into side length eg $2 \times 5+6$ (=16) $48 \div 16=3$ or $16 \times 3=48$	$48 \div 3(=16)$ forms equation $2 x+6=$ " 16 " or $5 x-9=" 16 "$ isolates x and number terms $2 x=$ " 10 " or $5 x=$ " 25 " shows $x=5$ for both solutions	$\begin{aligned} & 3(2 x+6)=48 \text { or } \\ & 3(5 x-9)=48 \text {, condone } \\ & \text { missing bracket } \\ & \text { Isolates } x \text { and number } \\ & \text { terms } 6 \mathrm{x}=" 30 " \text { or } \\ & 15 x=" 75 " \\ & \text { forms the second } \\ & \text { equation } \\ & \\ & x=5 \text { from } 2 \text { different } \\ & \text { equations. } \end{aligned}$

Paper: 1MA1/1H				
Question	Working	Answer	Mark	Notes
7		Comment	B1	for correct mathematical comment eg line segments not a curve or should draw freehand or should not use a ruler, or should be a curve NB Do not accept statements about scale or plotting accuracy.
8		$\begin{array}{ccc} 0.246, & 0 . \dot{2} 4 \dot{6} \\ 0.2 \dot{4} \dot{6}, & 0.24 \dot{6} \end{array}$	M1 A1	for correct use of recurring symbol eg $0.2 \dot{4} \dot{6}=0.24646 \ldots$ or 3 terms in the correct relative position cao
9		22.5	P1 P1 P1 P1 A1	for process to find James' speed eg $50 \div 2.5(=20)$ or $50 \div 150\left(=\frac{1}{3}\right)$ for process to find James' time for 15 km eg $15 \div$ " 20 " $(=0.75)$ or $15 \div \frac{1}{3}(=45)$ for process to find Peter's time for 15 km eg " 45 " $-5(=40)$ for process to find Peter's speed eg $15 \div$ " 40 " or $15 \div \frac{" 40 "}{60}$ oe
$10 \quad$ (a) (b)		$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept ± 10 for $(\sqrt[3]{125})^{2}$ or $\sqrt[3]{125}=5$ or $125^{2}=15625$ or $\sqrt[3]{125^{2}}$ cao

Paper: 1MA1/1H				
Question	Working	Answer	Mark	Notes
18		Correct enlargement	B2	Correct enlargement $(-1,-1.5),(-1,-3.5)(-2,-1.5)$
(B1	correct size, correct orientation in incorrect position or 2 out of 3 vertices correctly placed)			
19				

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ± 5 은
Measurements of length: $\pm 5 \mathrm{~mm}$

| PAPER: 1MA1_1H | | Modification | Mark scheme notes |
| :--- | :--- | :--- | :--- | :--- |
| Question | | | Diagram enlarged. Angles moved outside the angle arcs and the angle arcs made smaller.
 Arrow heads made longer and more obvious.
 Wording added 'AD is parallel to BC. AB is parallel to EC.' |
| 3 | | Diagram enlarged. Cross changed to a solid dot. Shading changed to dotty shading. | Standard mark scheme |
| 4 | | Frequency column has been extended to allow for working.
 MLP only: x changed to e, y changed to f.
 Braille only: will label the corners of the rectangle A to D and will give information about the
 rectangle. | Standard mark scheme |
| 5 | | Diagram enlarged. Crosses changed to solid dots. | Standard mark scheme
 by e, and y replaced by f. |
| 7 | | | Standard mark scheme |

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
12		Numbers on the table changed: least height changed from 154 to 155 , lower quartile changed from 161 to 160 and interquartile range changed from 7 to 10 .	
12	(a)	Diagram enlarged and labelled 'Diagram (i)'. Diagram (ii) put below Diagram (i) on the same page in the diagram book. Axis label moved to the left of the horizontal axis.	M1 for method to find UQ (168) or highest value (174), may be implied by correct values plotted M1 for showing a box and at least 3 correctly plotted values from $155,160,165,170,175$ A1 fully correct box plot
	(b)	Diagram enlarged and labelled 'Diagram (ii)'. Axis label moved to the left of the horizontal axis. Points on the box plot changed to: $145,155,160,165$ and 170.	Med IQR Range Y7 16010 25 Y11 165 10$\quad 20$.
14		MLP only: x has been changed to e and y has been changed to f.	Standard mark scheme with x replaced by e, and y replaced by f.

PAPER: 1MA1_1H

PAPER: 1MA1_1H Modification								Mark scheme notes
Question		Diagram enlarged.	Standard mark scheme					
19		Table has been turned to vertical format	Standard mark scheme					
20		Diagram enlarged. Wording changed to 'It shows two triangles CDA and BEA that are similar.' Wording added 'CB equals x cm, $\mathrm{BA}=8 \mathrm{~cm}, \mathrm{AE}=12 \mathrm{~cm}$ and ED $=3 \mathrm{~cm} . ’$	Standard mark scheme					
22	Diagrams enlarged. Braille only: will add information about the diagram.	Standard mark scheme						
23								

Pearson

Mark Scheme (Results)

November 2017

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 2H

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
1		$1 \frac{1}{2}$	M1 M1 A1	for correct expansion of the bracket or dividing all terms by 3 as a first step eg $3 x-3$ or $(5 x-6) / 3=3(x-1) / 3$ for isolating terms in x on one side of an equation eg $5 x-6-3 x=-3$ or both constants on one side of an equation, eg $5 x=3 x-3+6$, ft $5 x-6=3 x-1$ for $1 \frac{1}{2}$ oe
2	$\begin{aligned} & £ 6-£ 5.64=36 \text { p or } \\ & 50 \text { p }-47 \mathrm{p}=3 \mathrm{p} \end{aligned}$	6.4	P1 P1 A1	for a strategy to compare the same number of bottles e.g. $£ 5.64 \div 12(=47$ or 0.47$)$ or 12×50 p $(=6$ or 600$)$ or 36 or 0.36 or 3 or 0.03 for start of process to find percentage profit e.g. $\frac{" 36 "}{564}$ or $\frac{" 3 "}{" 47 "}$ or $\frac{" 6 "}{5.64}$ or $\frac{50}{447 "}$ oe with consistent units for answer in the range 6.3 to 6.4

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
3 (a) (b)		31.4 No (supported)	P1 A1 C1	for working with circumference formula, eg $\pi \times 80(=251 \ldots)$ oe for answer in the range 31.4 to 31.5 accept 10π Mean distance stays the same with reason, eg total distance remains unchanged or same number of points
4		$\frac{1}{11}$	P1 P1 A1	for starting the process, eg by writing down a correct ratio or using a given number of cubes for one relationship, eg 2B 1 Y or $\mathrm{B}: \mathrm{Y}=2: 1$ or 4 G 1 B or $G: B=4: 1$ or $8 G, 1 Y$ or $G: Y=8: 1$ oe or yellow $=2$, blue $=4$, or states 2:1:8 oe in any order (can be algebraic) for complete process to find possible number of each colour or equivalent ratio, eg 8 G 2 B 1 Y or $\mathrm{G}: \mathrm{B}: \mathrm{Y}=8: 2: 1$ oe or yellow $=2$, blue $=4$, green $=16$ oe (can be algebraic) $\frac{1}{11} \mathrm{oe}$
5 (a) (b)		$\begin{aligned} & (-2,1)(-4,1) \\ & (-2,2)(-5,2) \\ & (1,-4)(3,-4) \\ & (1,-5)(4,-5) \end{aligned}$	B1 B1	Shape labelled A Shape labelled B

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
6 (a)		6	B1	cao
(b)		5	B1	cao
(c)		Shown	M1	for writing 100^{a} or 1000^{b} as a power of $10\left(=10^{2 a}\right.$ or $\left.10^{3 b}\right)$ or $10^{2 a+3 b}$ or $100=10^{2}$ and $1000=10^{3}$
			C1	for complete chain of reasoning leading to conclusion

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
7		32.3	P1 P1 P1 P1 A1	for using Pythagoras to find length of third side of triangle, eg $7.5^{2}-6^{2}$ or $6^{2}+x^{2}=7.5^{2}$ or uses trigonometry to find angle in triangle, eg $\sin A=\frac{6}{7.5}$ or $\cos B=\frac{6}{7.5}$ (dep P1) for complete process to find length of third side of triangle eg $\sqrt{7.5^{2}-6^{2}}$ or $\sqrt{56.25-36}$ or $\sqrt{20.25}(=4.5)$ or uses trigonometry to find base length of triangle, eg $7.5 \times \cos$ " A " or $7.5 \times \sin$ " B " or $\frac{6}{\tan " A "}$ (dep P2) for $24-10-" 4.5 "(=9.5)$ (indep) for process to find angle $C D A$, eg $\tan C D A=\frac{6}{\text { base }}$ from right- angled triangle for answer in the range 32.2 to 32.3
8 (a) (b)		$2.7560 \ldots$ 2.76	M1 A1 B1	for $1.0654(059 \ldots), 0.1402(633 \ldots), 7.5957(541 \ldots), 2.756$ truncated or rounded to no less than 2 dp for $2.7560(\ldots$. for 2.76 ft from (a)

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
9		65.60	P1	for start in using inverse proportionality, eg $5 \times 4.5(=22.5)$ or $4.5=\frac{k}{5}$ or
10 (a)				

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
12		15	P1 P1 A1	for a process to find the interior or exterior angle of a regular 12 sided polygon e.g. $\frac{10 \times 180}{12}(=150)$ or $\frac{360}{12}(=30)$, must be no contradictions for process to find angle $S T R$, eg $\frac{180-" 150 "}{2}$ or $\frac{\text { " } 30 "}{2}$ cao
13 (a) (b)		58600 4.5	M1 A1 P1 P1 A1	for a complete method, eg $50000 \times 1.02^{8}(=58582(.969 \ldots))$ or for finding the increase in value of the company after 8 years, eg 8582(.969...) or 8600 cao for a process to find multiplier for 6 year period, eg $325 \div 250$ oe $(=1.3)$ or $130(\%)$ or for $250000 \times y^{6}=325000$ for a process to find multiplier for one year, eg ("1.3") $)^{\frac{1}{6}}$ or $1.044 \ldots$ or 1.045 $4.4-4.5$

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
14		Region R shaded	M1 M1 A1	for two of the lines $y=1, x+y=5, y=2 x$ correctly drawn for three lines correctly drawn for fully correct region indicated with all lines correct
15 (a) (b)		No with reason 66	C1 M1 A1	for "no" with reason, eg Tracey should multiply 8 and 7 for starting a method to find number of games played, eg $12 \times 11(=132)$ or sum of integers from 1 to 11 cao
16	$\frac{--4 \pm \sqrt{(-4)^{2}-4 \times 1 \times 1}}{2 \times 1}$	0.268, 3.73	M1 A1	for $x-2= \pm \sqrt{ } 3$ oe or one solution or use of $x^{2}-4 x+1=0$ to substitute into formula (allow one error in substitution) $0.267-0.27,3.7-3.74$

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
$\begin{array}{ll}17 & \text { (a) } \\ \\ \\ \text { (b) }\end{array}$	1.5, 6, 10.2, 7.2, 1.2	Histogram drawn $\frac{123}{150}$	C1 C1 C1 M1 A1	for 2 correct bars of different widths or at least 3 correct frequency densities. for all bars in correct proportions or 4 correct bars with axes scaled and labelled. for fully correct histogram with axes scaled and labelled. for a method to find number of students in interval, eg $30+51+36+\frac{1}{3} \times 18(=123)$ or $150-15-\frac{2}{3} \times 18(=123)$ for $\frac{123}{150}$ oe or 0.82 or 82%
18		0.98	B1	cao

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
19		Proof (supported)	M1	for a method to find coordinates of $M(-1,-1)$ or $N(3,1)$
M1		for method to find gradient of $M N$ or $P R$ or for method to find column vector for $M N$ or $P R$ or for differences of x coordinates and differences of y coordinates for $M N$ or $P R$		
for gradients of $M N$ and $P R$, ie $1 / 2$ oe				

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
20		68.5	B1	for angle $O A B=90^{\circ}$ or angle $O C B=90^{\circ}$, may be seen on diagram
			P1	for a process to find the length of $A B$ or the length of $C B(=10 \sqrt{ } 3 \mathrm{oe})$ eg $10 \times \tan 60^{\circ}(=17.3 \ldots)$ or the length of $O B(=20)$, eg $10 \div \cos 60^{\circ}$
			P1	for a process (dep previous P 1$)$ to find the area of the triangle $O A B(=50 \sqrt{3}$ oe) or area of triangle $O C B(=50 \sqrt{ } 3$ oe $)$ or area of kite $O A B C(=100 \sqrt{ } 3$ oe $)$
			P1	for a process to find the area of the sector $O A C$ e.g. $\frac{1}{3} \times \pi \times 10^{2}(=104.7 \ldots)$,accept rounded or truncated to 3 significant figures or more
			A1	for 68.4-68.6

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
21 (a)		$\frac{1}{55}$	M1	$\text { for } \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}$
			A1	$\text { for } \frac{1}{55} \text { oe }$
(b)		Conclusion (supported)	C1	starts correct argument, eg by calculating a relevant probability, eg $\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13}$
			C1	statement of "more likely" from eg comparison of probabilities, ft answer to (a) eg $\frac{1}{55}(=0.018 \ldots)$ and $\frac{2}{91}(=0.021 \ldots$ or 0.022$)$
22		7, -1	P1	for strategy to use $\mathrm{g}(3)=20$, e.g. $3 a+b=20$
			P1	for $\mathrm{g}(1)=a+b$
			P1	for a process to find inverse of f. e.g. $\mathrm{f}^{-1}(x)=\frac{x-3}{5}$ or $\mathrm{f}^{-1}(33)=6$
			P1	for using $\mathrm{f}^{-1}(33)=\mathrm{g}(1)$ to find an equation e.g. $\frac{33-3}{5}=a+b$
			A1	for $a=7, b=-1$

Paper: 1MA1/2H				
Question	Working	Answer	Mark	Notes
23 (a)		2	M1	for start to express the common ratio algebraically, eg $1 /(\sqrt{x}-1)$ or $(\sqrt{x}+1) / 1$ or $\sqrt{x}+1=k \times 1$ or $1=k \times(\sqrt{x}-1)$
			M1	for setting up an appropriate equation in x, eg $1 /(\sqrt{x}-1)=(\sqrt{x}+1) / 1$
			C1	for convincing argument to show $x=2$
(b)		Shown	M1	for expressing the relationship between the common ratio, one of the first three terms of the sequence and the fifth term, eg $5^{\text {th }}$ term $=3^{\text {rd }}$ term $\times(\text { common ratio })^{2}$
			C1	for a complete explanation to include eg, $(\sqrt{2}+1)(\sqrt{2}+1)^{2}=7+5 \sqrt{2}$

Q14

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ± 5 응
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_2H	Modification	Mark scheme notes	
Question		Both diagrams enlarged and put on the same page in the diagram book. Wording changed to 'There are 8 points equally spaced on the circumference of the circle, as shown in the diagram for Question 18(a)'. Wording changed to 'Four of the points are moved, as shown in the diagram for Question 18(b)'.	Standard mark scheme
3			

PAPER: 1MA1_2H

PAPER: 1MA1_2H

PAPER: 1MA1_2H

Question		Modification	Mark scheme notes
6	(c)	MLP and braille: a changed to e, b changed to f.	Standard mark scheme but for Braille letters changed as indicated.
7		Diagram enlarged. Arrows have been removed from 10 cm and 6 cm. Wording added ' $\mathrm{BC}=10 \mathrm{~cm}, \mathrm{AB}=7.5 \mathrm{~cm}, \mathrm{AD}=24 \mathrm{~cm}$. The vertical height of the trapezium is $6 \mathrm{~cm} . '$	Standard mark scheme.

PAPER: 1MA1 2H

PAPER: 1MA1 2H

Question		Modification	Mark scheme notes
11		Diagrams enlarged $\times 2$ but angles have been kept the same size.	Standard mark scheme but P1 areas are 100π and 64π P1 working is $\frac{70}{360} \times \frac{100 \pi}{164 \pi}$
12		Diagram enlarged. Dashes made longer and thicker.	Standard mark scheme
14		Diagram enlarged. List of inequalities stacked vertically.	Standard mark scheme
17		Numbers on the table have changed from 51 to 50,36 to 40 and 18 to 15 . In (a) grid enlarged.	Standard mark scheme in (a) using amended figures. In (b) M1 for a method to find number of students in interval eg $30+50+40+1 / 3 \times 15$ or $150-15-2 / 3 \times 15$ A1 for $125 / 150$ or $0.83-0.84$ or $83-84 \%$
20		Diagram enlarged. Shading has changed to dotty shading. Angle moved outside the angle arc and the angle arc made smaller.	Standard mark scheme
23	(a)	MLP and braille: x changed to y.	Standard mark scheme but for braille note change of letters.

Pearson

Mark Scheme (Results)

November 2017

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Paper: 1MA1/3H				
Question	Working	Answer	Mark	Notes
1 (a)		$160<h \leq 170$	B1	correct class interval
		Line segments	C2	for fully correct frequency polygon
		joining the points	[C1	for points plotted correctly at midpoints of intervals
		$\begin{gathered} (135,4),(145 \\ 11), \end{gathered}$		OR joining points with line segments at the correct heights and consistent within the intervals (including end values)
		$(155,24)$		OR correct frequency polygon with one point incorrect
		$\begin{gathered} (165,22) \text { and } \\ (175,19) \end{gathered}$		OR correct frequency polygon with first and last point joined]
				NB : ignore any histogram drawn and any part of frequency polygon outside range of first and last points plotted
2		New York (supported)		for changing between $£$ and $\$$, eg $1.089 \times 1.46(=1.58(9)$.$) or 2.83 \div 1.46(=1.93(8)$.$) or$ between litres and gallons, eg $1.089 \times 3.785(=4.12(1)$.$) or 2.83 \div 3.785(=0.74(7)$.
			P1	for a complete process to give values that can be used for comparison, eg "1.938..." $\div 3.785(=0.51(2)$.$) or " 1.589 \ldots$...... 3.785 (= $6.01(7)$. or $1.089 \times 3.785=(4.12(1)$.$) and 2.83 \div 1.46(=1.93(8)$.
			C1	for New York and correct comparative values
3		648	M2	a complete method, eg $12.5 \times 1000 \div 19.3$
			[M1	for using volume $=$ mass $/$ density, eg $12500 \div 19.3$ (condone inconsistent units or incorrect conversions) may be implied by digits $647 \ldots$ or $648 \ldots$...
			A1	for answer in range 647 to 648

Paper: 1MA1/3H				
Question	Working	Answer	Mark	Notes
4		15	P1 P1 A1	strategy to start the problem, eg $8: 20$ and $20: 5$ process to solve the problem, eg $\frac{5}{33} \times 100$ or $24: 60: 15$ cao
5 (a) (b)		$\begin{gathered} 0.625 \\ 9.75 \leq x<9.85 \end{gathered}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \\ & \text { [B1 } \end{aligned}$	cao for $9.75 \leq x<9.85$ for 9.75 or 9.85 (or $9.84 \dot{9}$)]
6		147	$\begin{aligned} & \text { P1 } \\ & \text { P1 } \\ & \text { P1 } \end{aligned}$ A1 B1	starts process, eg uses x and $x+7$ starts to work with at least 6 correct sides, may be on the diagram or in an expression (dep on previous P 1) gives a correct expression for the perimeter, eg $x+x+7+x+7+x+7+x+x+7+x+7+x+7$ or adds at least 6 correct sides and equates to 70 for width $=3.5$ oe and length $=10.5 \mathrm{oe}$ $\mathrm{ft}(\mathrm{dep} \mathrm{P} 2)$ for correct area for their x
7		0.0007452	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	digits 7452 seen cao

Paper: 1MA1/3H				
Question	Working	Answer	Mark	Notes
8 (a) (b)		Mel (supported) $\frac{2}{9}$	B1 M1 A1	Mel with reference to greatest number of throws selects overall total and multiplies $\mathrm{P}($ point up $) \times \mathrm{P}($ point down $)$ eg $\frac{50}{150} \times \frac{100}{150}$ oe (accept $\frac{14}{45} \times \frac{31}{45}$ or $\frac{27}{80} \times \frac{53}{80}$ or $\frac{9}{25} \times \frac{16}{25}$) for $\frac{2}{9}$ oe
9 (a) (b)		5 2.4	M1 A1 P1 P1 A1	evaluates $(0.85)^{n}$ or $12500 \times(0.85)^{n}$ for at least one value of n cao for a process to find the amount of interest before tax, eg 79.20 $\div 0.6(=132)$ for a process to find value of R, eg " 132 " $\div 5500 \times 100$ cao
$10 \quad$ (a) (b)		$\begin{gathered} 0.05 \\ 20 \\ \text { Reason } \end{gathered}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \end{aligned}$	for 0.05 oe for stating that at least 20 required for reason eg explains that number of each colour must be a whole number or that there must be (at least) 1 red counter or shows that $0.05=\frac{1}{20}$

Paper: 1MA1/3H				
Question	Working	Answer	Mark	Notes
18 (a)	values $0,2,5,10,18$	130	M1	for starting to find area under the curve, eg $0.5 \times 5 \times 2(=5)$
			M1	for a complete method to find the area under the curve using 4 strips of equal width, eg " 5 " $+0.5 \times 5 \times(2+5)(=17.5)+0.5 \times 5 \times(5+10)(=37.5)+0.5 \times 5 \times(10+18)(=70)$
			A1	for 130 or answer in range 130.1 to 132 supported by accurate working
(b)		overestimate with reason	C1	for "overestimate" and appropriate reason linked to method eg area between trapeziums and curve also included
19		Proof(supported)	M1	starts process to find point of intersection by substituting, eg $(10+2 y)^{2}+y^{2}(=20)$
			M1	for expanding, eg $4 y^{2}+20 y+20 y+100$ (3 out of 4 terms correct)
			M1	(dep M2) for 3-term quadratic equation ready for solving, eg $5 y^{2}+40 y+80=0$
			M1	(dep on previous M1) for method to solve an equation of the form $a y^{2}+b y+c=0$, eg by factorising or correct substitution into quadratic formula
			C1	fully correct method leading to $y=-4$ or $x=2$ or $(y+4)^{2}=0$ or $(x-2)^{2}=0$ and statement, eg only one point of intersection so the line is a tangent to the circle
20		Proof	C1	draws $O C$ and considers angles in an isosceles triangle (algebraic notation may be used, eg two angles labelled x)
			C1	finds sum of angles in triangle $A B C, \operatorname{eg} x+x+y+y=180$, or sum of angles at O, eg $180-2 x+180-2 y$
			C1	complete method leading to $A C B=90$
			C1	complete proof with all reasons given, eg base angles of an isosceles triangle are equal, angles in a triangle add up to 180°, angles on a straight line add up to 180°

Paper: 1MA1/3H				
Question	Working	Answer	Mark	
21				

Question 2

London	$1.089 \times 1.46=\$ 1.58(9 .$.$) per litre$	\rightarrow	$1.589 . . . \times 3.785=\$ 6.01(7 .$.$) per gallon$
	$1.089 \times 3.785=£ 4.12(1 .$.$) per gallon$	\rightarrow	$4.121 \ldots \times 1.46=\$ 6.01(7 .$.$) per gallon$
	$2.83 \div 1.46=£ 1.93(8 .$.$) per gallon$	\rightarrow	$1.938 \ldots \div 3.785=£ 0.51(2 .$.$) per litre$
	$2.83 \div 3.785=\$ 0.74(7 .$.$) per litre$	\rightarrow	$0.747 \ldots \div 1.46=£ 0.51(2 .$.$) per litre$

The table shows the most commonly used approaches. There are of course other approaches that can be used.

Question 9(a)

\boldsymbol{n}	$\mathbf{(0 . 8 5)}^{\boldsymbol{n}}$	$\mathbf{1 2 5 0 0} \times\left(\mathbf{0 . 8 5} \mathbf{n}^{\boldsymbol{n}}\right.$
1		10625
2	0.7225	9031.25
3	0.614125	7676.5625
4	0.52200625	6525.078125
5	0.4437053125	5546.316406

Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ± 5 ㅇ
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
1		Numbers in the table have changed to: 130-140: 5; 140-150: 10; 150-160: 20; 160-170: 30; 170-180: 15 In part (b) Diagram enlarged. Right axis has been labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Vertical axis extended so it goes up to 35 .	Standard mark scheme with the amendment: Line segments joining the points $(135,5),(145,10),(155,20)$, $(165,30)$ and $(175,15)$
6		Diagram enlarged. Wording added 'Diagram (i) shows'. Shape labelled as 'Diagram (i)'. Wording added 'Diagram (ii)' after ' 8 -sided shape,' Shape labelled as 'Diagram (ii)'.	Standard mark scheme
10		Table turned to vertical format.	Standard mark scheme

PAPER: 1MA1_3H										
Question									Modification	Mark scheme notes
11		Diagram enlarged and right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Graph line moved so it goes through $(40,5)(55,30)$ and $(65,50)$.								Standard mark scheme
										(a) B1 55 cao (b) standard mark scheme (c) standard mark scheme with some adjustments: C1 reads from graph at weight $65(=50)$ or at cf 45 (in range 8 to 9.5) C1 eg 25% of 60 is 15 but only 10 potatoes have a weight greater than 65 g or 25% of potatoes have a weight greater than 63 g (approx.)

PAPER: 1MA1_3H				
Question		Diagram enlarged.	Modification	Mark scheme notes
12		Diagram enlarged. Angles moved outside of the angle arcs and the angle arcs made smaller. Wording added 'Angle ABC $=118^{\circ}$, Angle BCA $=48^{\circ}$, Angle ADC $=105^{\circ}$ and AD $=11 \mathrm{~cm}$.		
17		Diagram enlarged and right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Graph line moved to go through points $(0,0)(5,2.5)(10,5)(20,17.5)(23.75,25)$.	Standard mark scheme 18	

